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Institute of Physics and Nuclear Engineering, PO Box MG6, Bucharest, Romania 

Received 12 February 1986 

Abstract. The surface critical behaviour of the semi-infinite ferromagnetic n-vector Kac- 
Baker models is obtained. Near the ordinary and special transition points the self- 
consistency equations (which couple all the unknowns) are shown to be a small perturbation 
of a two-step recursion relation. The critical behaviour is thus shown to be controlled by 
the behaviour of a dynamical system near the bifurcation of a new hyperbolic fixed point. 
This provides both the local critical behaviour and the scaled magnetisation profile. 
Thereby, the range of validity of the continuum approximation is established. 

1. Introduction 

Many problems in condensed-matter physics involve the study of a sample with local 
average properties which vary along one direction, while in the other directions the 
sample is homogeneous. The study of such systems has been the subject of a large 
variety of papers, both theoretical and experimental. Mean-field theory is, as usual, 
a useful first approximation, since it often provides a correct picture of phase diagrams. 
However, in contrast with the simplicity of bulk mean-field theory, its inhomogeneous 
counterpart for lattice systems turns out to be rather complicated as it involves an 
infinite number of mean fields to be determined from a coupled system of non-linear 
equations. 

Usually, the mean-field equations for inhomogeneous discrete systems appear as 
two-step recursion relations in which case the problem becomes one of non-linear 
dynamics: every solution is generated by a trajectory (subject to appropriate initial 
conditions) of a certain area-preserving map. This point of view has recently been put 
forward in the case of spin systems by Angelescu et a1 (1981b), Bak (1981) and Pandit 
and Wortis (1982). The method has been applied to the description of commensurate- 
incommensurate transitions (Bak 1981, Aubry 1983), surface critical behaviour and 
interfaces (Angelescu er a1 1981a, b, 1983, Pandit and Wortis 1982) as well as adsorption 
phenomena (Pandit er a1 1982). Numerical studies have shown that the relevant map 
has in general a large variety of different types of orbits. It is highly non-trivial to find 
among these the orbit corresponding to lowest free energy. The energetically stable 
states correspond to trajectories which are unstable with respect to small perturbations 
and this makes the numerical study extremely delicate. Under these circumstances, 
any analytical information is welcome. For free-surface ferromagnets, Angelescu et a1 
(1981b) have succeeded in analytically describing the physical solution which reduces 
the problem to the study of the stable manifold of the relevant hyperbolic fixed point. 
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For systems with competing interactions or structural transitions, the problem is much 
more difficult and analytic results are hard to come by (see, however, Aubry 1983). 

When the self-consistency equations couple more than three layers each, the 
mathematical analysis gets much more involved, the associated map acting in a 
higher-dimensional space. It is not clear whether this brings about a corresponding 
complexity in the physical behaviour. It is likely that physically interesting orbits lie 
in a low-dimensional subspace and finding mechanisms through which this reduction 
is performed is important both physically and mathematically. This might be especially 
significant for truly short-range inhomogeneous systems in high spatial dimensions, 
where the local mean-field critical behaviour should set in. 

A considerable mathematical simplification is obtained in the continuum approxi- 
mation, which replaces the non-linear system by a one-dimensional Ginsburg-Landau 
equation. The latter corresponds to an integrable map and therefore its phase portrait 
is quite simple. Obviously the continuum theory loses information on the behaviour 
at the level of one layer, for example, it cannot describe the infinite sequence of distinct 
layer transitions which, however, do appear in the (non-integrable) discrete wetting 
theory. 

Thus, even in the mean-field theory, the relationship between discrete and con- 
tinuum theories is questionable. Intuitively, one expects the continuum approximation 
to be valid whenever the magnetisation variation is slow on the scale of lattice spacing, 
for instance deep into the bulk when the correlation length 6 >> 1. Even if this is correct, 
it remains to be understood why one can thereby obtain reliable information on local 
critical behaviour. Establishing the range of validity of the continuum approximation 
within mean-field theory might be of relevance for finding its exact status in more 
sophisticated approaches. For Kac-Helfand models Angelescu et al (1981b) have 
found a mechanism by which the continuum mean-field theory can be recovered from 
the discrete one at the ordinary transition. This was related to the behaviour of the 
stable manifold of the ‘ferromagnetic’ fixed point near its bifurcation from the ‘paramag- 
netic’ one, which dictates the critical behaviour both on the scale of the correlation 
length and of the lattice constant. The problem of extending the range of applicability 
of this picture to more complicated models is intimately connected to the dimensionality 
reduction referred to above. 

In this paper we answer these questions for the semi-infinite ferromagnetic Kac- 
Baker model (Kac and Helfand 1963, Baker 1963). The model assumes that the 
intralayer interactions are of mean-field type while spins in different layers interact 
via short-range (nearest-neighbour) forces. Every self-consistency equation of the 
model couples all layer magnetisations. As it looks the self-consistency system cannot 
be reduced to a recursion relation and thus be associated in an obvious way with a 
finite-dimensional dynamical system. We shall show, however, that in certain circum- 
stances (near the ordinary transition line and around the special transition point) the 
behaviour of the solution is controlled by an area-preserving map (similar to the one 
related to the Kac-Helfand model and studied in Angelescu er al (1981b)). More 
specifically, in the critical region and in the neighbourhood of the interesting solution, 
the system behaves like a small perturbation to a main part which is a two-step recursion 
relation. As a consequence the mechanism by which the continuum approximation 
sets in is the same as in the case of a two-step recursion relation. This implies that, 
while the continuum approximation describes the phase diagram correctly, the magneti- 
sation profile it predicts is not relevant on the surface and extraordinary transition 
lines but near their intersection point (special transition) it is. 
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2. Description of models and phase diagrams 

The isotropic n-vector model with Kac-Baker interactions, which will be our concern 
here, consists of a set of classical n-dimensional 'spins', a,,, of length nl'* (1 c ic M 
labels the layers while l s a s  N labels the in-layer position of the spin) whose 
interaction energy is given by 

%M.N = - f c Jia, J~'+IaaJp - (2.1) 

JIa,Jp = ( l /N)8i j ( l+A~i , )+8 ,p81i - j1 ,1  A >  -1. (2.2) 

where 

It can be seen that the spins in the same layer have mean-field type interactions of 
strength 1; we allowed the surface layer interaction strength to be 1 + A  in order to 
make contact with other studies on surface critical behaviour (see, for instance, Binder 
1983). Note also that the interaction among spins in different layers is short-ranged, 
namely of nearest-neighbour ( N N )  type. The magnetic field h, > 0 acting on the spins 
in the ith layer and taken along the first axis in the spin space has only the usual 
transitory role and will eventually be set equal to zero (after performing the thermody- 
namic limit). 

The limit N + ~3 will provide an inhomogeneous mean-field model with M order 
parameters. Its free energy 

F M ( h )  = - lim (PMNn)-' log exp(-p%M,N) n duia 
N-02 J i,a 

is related (cf a general result on systems with mixed long-range and short-range 
interactions of Lebowitz and Penrose 1966) to the free energy F M  ( h )  of the correspond- 
ing n-vector chain with N N  interactions in an inhomogeneous external field through 

(2.3) 

The semi-infinite model will thence be obtained by letting M + a. We start by analysing 
the Ising model which, as will be seen, is in a certain sense special among the n-vector 
Kac-Baker models. 

2.1. The Ising model 

The extremum conditions in (2.3) involve the magnetisations p , ( h )  = - d F M ( h ) / d h l  of 
the Ising chain in an inhomogeneous field. These have been calculated by Costache 
(1976). One obtains 

(2.4) (1 +A8,,)-'u, = p , ( h + u )  = tanh(x, +y,- , )  ( i  = 1, . . . , M )  

where x,, y ,  are defined recursively via 

xM+1 = o  xi = P ( h ,  + U,) +f(x,+1) ( 2 . 5 ~ )  

(2.5b) 

f (x )  = tanh-l( r tanh x)  r = tanh p. (2.6) 
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The layer magnetisations of the model are 

(2.7) 

where u ( h )  is the appropriate solution of (2.4) and thus m,(h)  equals u , (h)  for all but 
the first layer. 

The main complication with (2.4) comes from the fact that the RHS couples all the 
unknowns. The peculiarity of the Ising model is related to the Ornstein-Zernicke 
property of the N N  Ising chain: when considering the inverse problem of determining 
the external field h which produces prescribed magnetisations m, i.e. when solving 
for h the system m, = p, (h) ,  ( i  = 1,.  . . , M ) ,  it turns out that h , ( m )  depends in fact 
only on m,-,, m, and m,,, (i.e. the direct correlation functions have the same range 
as the interaction). This fact has been observed by Percus (1977) who proved it in the 
thermodynamic limit and under an additional assumption. One can see, by looking 
at (2.5), that the property holds however unconditionally for every finite-length chain 
and every distribution of magnetisations of moduli less than 1. As a consequence, the 
self-consistency equations (2.4) are transformed into recursion relations, namely 

p [  h ,  + (1 + A)m, ]  = tanh-' cp( m,, mJ 

P ( h , + m , )  =tanh-' cp(m,, m,+,)-tanh-' cp(m,-,, m,) 

where 

a F M  m , ( h ) =  - - ( h ) = p , ( h + u ( h ) )  
ah,  

(2.8) 
i = 2 ,  . . . ,  M 

cp(x, y )  = 2( r-lx - y)/{r-' - r + [(r-' - r ) ' - 4 (  r- '+ r - 2)xy +4(x  -y ) ' ]"2} .  (2.9) 

The other n-vector chains are not exactly Omstein-Zernicke systems. The study 
of their self-consistency equations, which is our main concern here, will be exemplified, 
for simplicity reasons, only on the spherical model (the n +CO limit) where all the 
salient features of the analysis are preserved. 

2.2. The spherical model 

In order to get the spherical model for inhomogeneous systems one has to perform 
the spherical limit n +CO of the n-vector models. Relying on the analysis of Knops 
(1973) and Angelescu et a1 (1979) the state of the system is determined once the 
'spherical fields' are given. In our case the spherical fields in the thermodynamic limit 
N + m, y I ,  can be obtained as the unique solution of the system 

x,' = p ( 1 - m f ) i =  1, .  . . , M (2.10) 

XI] = ?IS, - - ~ l l - ] ~ , I  (2.11) 

X - I M  - A '  P > 0 p, = &JS,, (1, ) I ]  = 811 (2.12) 

where X is a tridiagonal matrix given by 

subject to the condition 

and m, are the layer magnetisations defined in terms of y, by 

( X - I M - A - P ) m = h .  (2.13) 

One can alternatively view m as unknowns and determine y in terms of m via 
(2.13), which substituted in (2.10) provides the self-consistency equations of the model. 
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Thus far we derived the equations for a slab; the semi-infinite system is hence 
obtained by letting M + m. Taking into account that in both models the Griffiths 
inequalities hold (Griffiths 1967, Angelescu er a1 1979), the limit M + oc is straightfor- 
ward: every layer magnetisation m, converges as M +CO monotonically and the limit 
magnetisations { m,,  i a I} will satisfy the infinite system of self-consistency equations, 
(2.8) and (2.10)-(2.13) respectively, where M = 00. Likewise, the limit h i 0  exists and 
satisfies these equations with h = 0. However, in this process the strict inequality in 
(2.12) may no longer hold (see below). 

The problem has been reduced to that of finding a solution of the infinite self- 
consistency system for h = 0, subject to the conditions: m, 3 0 for all i and lim,+= m, 
exists and equals m, the bulk spontaneous magnetisation at the given temperature. We 
take for granted that there exists only one solution with these properties. Though 
physically obvious, the uniqueness problem may present real mathematical difficulties 
if the equations are not recursion relations. 

We conclude this section with a discussion of the phase diagrams of the two 
semi-infinite systems. To this aim, we shall find the domains in the parameter space 
(p ,  A )  where the appropriate solution of the self-consistency equations is analytic of 

We start with the Ising model, where the Ornstein-Zernicke property allows a good 
qualitative discussion. Let us solve the second equation (2.8) for m, , , :  m, , ,  = 
F p ( m l - , ,  m , ) ,  and define the two-dimensional map Tp by 

( P ,  A).  

(2.14) 

Then, for every m , ,  m2 satisfying the first equation (2.8), one can obtain a solution by 
iterating Tp on ( z ; ) ,  i.e. a solution of (2.8) is given by an infinite trajectory of Tp.  If 
we require moreover the existence of limi,m mi, we have to look only for trajectories 
which converge to one of the fixed points of Tp.  The latter are defined by the equation 
x = Fp(x, x),  i.e. 

(2.15) 

Equation (2.15) always has the solution x = 0, and this is the only solution if p s pc 
with pc determined from 

pc e2pc = 1 .  (2.16) 

At Pc two other fixed points bifurcate from (",, namely +(fi$l) with m ( P ) >  0 ( p  > pc). 
The free energy per site depends only on limi+= mi and is lower for * m ( p )  than for 
0. The symmetry breaking field ( h J 0 )  throws away one solution, so we are left with 
one relevant fixed point, (:$;). Thus, crossing pc corresponds to the bulk transition 
and m ( p )  is the bulk spontaneous magnetisation (compare with Kac and Helfand 1963). 

To obtain the solution of (2.8) one still has to determine the starting point (l;) 
such that the trajectory be attracted by the relevant fixed point. By linearising Tp 
around the fixed points, one easily establishes that (:) is hyperbolic for p < pc and 
(f$i) is also hyperbolic for p > pc, i.e. the corresponding tangent maps have one 
eigenvalue larger and one smaller than unity. The set of points attracted to a hyperbolic 
fixed point is the stable manifold of that point, in our case a certain curve 7" in the 
x, y plane whose tangent at the fixed point is given by the contracting direction of the 
tangent map. 7" is defined by a certain functional equation which is the main tool in 
deriving its various properties needed below. The physically interesting solution of 

px = tanh-' q ( x ,  x)  -tanh-' r q ( x ,  x). 
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(2.8) appears thus as the trajectory To with starting point the intersection of the stable 
manifold s' with the curve defined by the first equation (2.8). As %a has a simple 
dependence on A, while the fixed points and s' depend only on p, the qualitative 
behaviour of the solution can be easily established as a function of (p ,  A). 

For p < p,, W a n  s' contains the origin; if this is the only point in the intersection, 
which happens for A sufficiently small, the only solution is the trivial one, mi = 0. 
However, if % A n  'V also contains a point (:;) with m,, mz> 0, the associated solution 
will have a smaller surface free energy and will thus be the thermodynamically stable 
solution; it will describe a phase with magnetised surface and layer magnetisations 
exponentially approaching zero (figure 1). This situation will appear for all p < p, if 
A is sufficiently large; the exact value of A, As@), at which this solution bifurcates can 
be obtained by equating the slopes of and s' at the origin. The result is 

4r 1'" p <pc.  As@) = -+-[ 2P 2 (7) - p ( r - l  - r )  
1-p 1 1-p 

(2.17) 

As expected As@) - p-' for p i 0  (the surface decouples completely). In the continuum 
approximation this cannot be true, contrary to the assertion made by Lubensky and 
Rubin (1975). 

Figure 1. The stable manifold and the orbit corresponding to the surface-magnetised phase. 

For p > pc and A sufficiently small (large), one has m, < m ( p )  ( m ,  > m ( P ) )  so the 
solution increasingly (decreasingly) approaches m ( p ) .  In all cases one has a mag- 
netised bulk and the solution depends analytically on A (because itself does) 
(figure 2). 

The resulting phase diagram is depicted in figure 3. Phase I is paramagnetic, 111 
ferromagnetic, I1 has surface but not bulk magnetisation. The various transitions are: 
1-11 ( p  < pc, A = A,@)) surface transition; 1-111 ( p  = pc, A < A, = A,(P,)) ordinary 
transition; 11-111 ( p  = p,, A >  A,) extraordinary transition. (p,, Ac) is called the special 
transition point. 

In the case of the spherical model (and for all n-vector models with n 2 2) another 
approach is needed. We start again from the remark that (2.10) and (2.13) (where 
h = 0) always have the solution m = 0; the corresponding matrix X o  should satisfy 

( X i ' ) i i  = P i = 1,2,. . . (2.18) 
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Figure 2. The stable manifolds and the orbits corresponding to the ferromagnetic phase 
when ( a )  m, < m, ( b )  m, > m. 

which is solved explicitly 

yy= K G '  Y ~ = K ~ + K ; '  i 2 2  

where 0 < K~ = K ~ ( P )  < 1 is the solution of the equation 
( K - 1 -  K ) - ' = P  

i.e. 

(2.19) 

(2.20) 
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26 

111 

1 1  L! 
0 

la 

3; ' P-' 

Figure 3. The phase diagram. 

Indeed, the matrix X o  with diagonal entries ( 2 . 1 9 )  is positive definite, its continuous 
spectrum is the segment $o = [ K~ + K O '  - 2, K~ + K;'  + 21 and its inverse is given by 

(x-1) 0 ij = ( K ; l  - K o ) - l .  Klg-Jl i , j = 1 , 2  , . . . .  ( 2 . 2 1 )  

However, this is not the solution of the self-consistency equations unless X o  - I - A - P 2 
0. The spectrum of the latter consists of a continuous component 4o - 1 = [ K ~ +  K; '  - 3, 
K ~ +  K;' + 11 and, if ( X 0 ) 2 2  - (X0),' = K ~ +  A > 1,  of an isolated eigenvalue A. = 
K ~ + K ; ~ - ~ + ( K , , + A ) - ( K ~ + A ) - ' ,  Thus we must require K ~ + K ; ' - ~ > O  for K , + A ~ I  
and A. 2 0 for K ~ +  A > 1 .  This corresponds to region I in figure 3 whose boundary is 
given by 

{ p  = p C =  5-" * ,  A s  A C = f ( 5 ' / ' -  l ) } u  { p = & ( A )  

= [ A  +:+ (!+A) 4 A ( l + A )  '1'3 - I ,  A > Ac}. (2.22) 

In region I1 A. < 0 but the continuous spectrum 4o - 1 is strictly above zero; the matrix 
X corresponding to the solution is obtained by perturbing X o  with a 'potential' 
V =  r-To which vanishes when i + q  such that the isolated eigenvalue is shifted up 
to zero (thereby the continuous spectrum is not affected). The corresponding eigenvec- 
tor of X - I - A .  P is m. Thus, lim,+m m, = 0 and m, > 0 for all i (because X has 
non-positive off-diagonal entries) which Corresponds to a phase with only surface 
magnetisation. Finally, in region 111, 0 is inside 9o - 1 and no potential vanishing at 
infinity can make the matrix positive definite. In this case X = X o ( p c )  - V with V 
vanishing at infinity (cf ($3).  In particular, Iim,-- ( X - I ) , ,  = pc, which means that 
m = lim,-= m, exists and satisfies pc = p (  1 - m'), i.e. m is the bulk magnetisation of 
the spherical model. 
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3. The critical behaviour at the ordinary transition 

In  this section we shall study the critical behaviour of the layer magnetisations at the 
ordinary transition. We shall show that, as expected, the continuum approximation 
is good there. The study of the Kac-Baker model with n = 1, ( 2 . 8 ) ,  is similar to that 
of the Kac-Helfand model done by Angelescu et a1 (1981b), up to inessential technical 
complications related to the different form of Fp(x ,  y )  in (2.14). Its critical behaviour 
is dictated by the behaviour of the stable manifold for PLP,. We shall therefore 
consider in some detail only the spherical model. In this case also, we isolate a 
finite-dimensional map which controls the transition, i.e. whose trajectories provide 
good approximations of the exact solution in the critical region. This picture might 
hopefully hold in a wider context, e.g. for short-range models in high spatial dimension. 

The equations of the semi-infinite model near the ordinary transition are 

diag(X-') = P (  1 - mm) X m = m  inf spec(X - I )  = 0 ( 3 . 1 )  
where we have put for simplicity A =O. Here, diag M denotes the vector whose 
components are the diagonal entries of the matrix M, xy is the vector with components 
x , y , ,  and 1 ,  = 1. If X,=X,(p,), then diag(X,')=P,l =P(1 - m 2 ) 1  and 

(XA'I = t ( 3 + J 3 )  (XJII = 3 i s 2 .  ( 3 . 2 )  

v=x,-x u=diag V x = m / m  ( 3 . 3 )  

(X, - V) - 1  - x,' = x,' vx,' + x,' vx, ' V( x, - V) - ' (3.4) 

A - ' u - p m 2 ( 1 - x x )  = -diag[X,'VX;'V(X,- V)-'] ( 3 . 5 ~ )  
U, = [(X- I ) X l , l X ,  XI > 0 i = 1 , 2 ,  . . . . (3 .5b)  

The matrix A-' in ( 3 . 5 ~ )  is the Schur square of X i ' ,  i.e. (A- ' ) , ]  = (Xi ' ) ; ;  it is therefore 
positive definite. Its inverse is tridiagonal, which expresses an approximate Ornstein- 
Zernicke property of the model ( A ,  is the lowest order in the expansion of the direct 
correlation function around m = 0) and is given by 

(3.6) 
It is precisely because A has finite range which enables one to approximately reduce 
the system to a dynamical system, implying mean-field critical behaviour (one would 
expect the same behaviour of the N N  spherical model in spatial dimension d s 5 ,  where 
the corresponding A has exponential decay). Applying A to ( 3 . 5 ~ )  and substituting 
(3.561, our system is brought to the form 

Now, denoting 

and using the perturbation formula 

we transform (3 .1 )  into 

A = 4J3 [ (X, - I )  + 5 D] D =  I + : ( J S - 2 ) P .  

Qf(x) = t4xRf(x) ( 3 . 7 )  
where we have redefined for convenience the small parameter 

t = ( ~ & / 3 ) ' / ' m  ( 3 . 8 )  

Qf (x) = (X, - Z)X  - 5r2Dx( 1 - XT) - f(J3 - I )  t 'hc  (3.9) 

and 

R,(x)=-t- ' (X,-Z)(xx)-Adiag 
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Let us stress that in this way we isolated on the LHS Q , ( x ) ~  which depends only on 
x i - ' ,  xi, xi+, .  The task which we shall endeavour next is to show that the RHS is a 
small perturbation thereof. The core of the argument is that R,(xo( t ) )  remains bounded 
when tJ.0 if xo(t) is the positive solution of the equation 

Q,(x) =O. (3.11) 

This requires a close study of the properties of xo(t). But, as explained in § 2 ,  the 
solutions of (3.11) are related to the trajectories of the map T,: R'+ R' given by 

) t > 0 .  "( ;) = ( 2 y  - x  -5t2y(l  - y ' )  
(3.12) 

T, is invertible and area preserving. Its fixed points are (:) and *(!). The tangent map 
of TI at e = ( ! )  

(3 .13)  

has eigenvalues A, < 1 and A;' > 1 and eigenvectors (i,) and ( t r ) ,  respectively. We note 
that 

A,  = 1 -mt+o(t2). (3.14) 
Thus, e is a hyperbolic fixed point of T,, which becomes degenerate when r3.0. The 
following lemma summarises the information we need about its stable manifold. 

Lemma 1. The connected component of the stable manifold of e contained in the 
positive quadrant of R' and containing e is the graph of a C"-function cp, : R ,  + R,. 
cp, is strictly increasing, contracting (cp :( x )  < 1 )  and concave. Moreover, uniformly on 
compacts 

(3 .15)  lim t-'[cp,(x)-x] = h ( x ) =  (;)"2(l-x2). 
110 

The proof of the lemma can be adapted from Angelescu et a1 (1981b). For the reader's 
convenience, we outline it in appendix 1. As an immediate consequence, we have the 
following information about xo( t ) .  

Corollary 1. The equation Q,(x)=O has a unique positive solution, x0(t), such that 
limi+m xo(t)i  = 1 .  For t3.0 the following limits exist: 

(3.16) 

rL0 , i -m, i t+z  lim xo( t ) i  = p ( z )  (uniformly on compacts in z z 0). (3.17) 

Here the scaled magnetisation profile, p(z) ,  is the solution of the differential equation 

dp /dz  = h ( p )  P ( 0 )  = 0 (3.18) 
i.e. p ( z )  = tanh(;)"*z. 

Pmoj The trajectory attracted by e and completely contained in the positive quadrant 
should start on the graph of c p I .  We have therefore to intersect the latter with Q,(x)' = 0, 
i.e. x o ( t ) ,  is the (unique) positive solution of the equation 

(3.19) f(1 + f i ) X ,  - 5t 'Xl(  1 - X : ) D , ,  - t 2 $ ( f i -  l)X, = c p f ( X l ) .  
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From (3 .19)  and (3 .15) ,  we have 

for t&O. Also, x o ( t ) ,  = c p : ( l - ' ) ( x o ( r ) l ) - x o ( r ) l + ( i -  l ) t h ( O ) ,  which gives (3 .16) .  The 
limit (3 .17)  equals lirni+m cp",:,(x0( t ) l )  = limi+m C~",~(O) ;  the non-linear Trotter-Chernoff 
formula (Brezis and Pazy 1970) applied to the family cp, of contradictions of [0, m), 
identifies the latter with the 'evolution' of 0 at 'time' z under the semigroup generated 
by limfi0 t- '(cp,  - cpo) = h, i.e. with the solution of the Cauchy problem (3 .18)  evaluated 
at z. 

Later on we shall need further properties of x o ( t ) ,  among which the exponential 
approach of xo( t ) i  to 1 as i + m plays a prominent role. In order to control the latter, 
we define now a suitable family of Banach spaces indexed by t. 

Let 0 < 5 < 1 be an arbitrary, but fixed, number and 

We define B, as the Banach space of all sequences 6 ={ti; i = 1 , 2 , .  . .} with 

IIgIIr SUP PF'ItiI < W .  
i =  1.2, ... 

The adequacy of this definition is shown by  the following estimate. 

Corollary 2. For some tor C > 0 (depending only on L), we have for all t < to 

I-xO(t)EB, and l l l - x o ( ~ ) l l f ~ c  

where 1 denotes the sequence with all terms equal to unity. 

Proof: Clearly 

(3 .20)  

(3 .21)  

Because (0, is concave, we have cp,(z)> 1 - p , ( l  - z )  for z >  5 and cp,(z)> 
( 1  - p , ) (  1 - 5) + z for z < 5. Hence, remembering that xp are obtained by iterating cpf 
on xy and defining i f  as the greatest i for which xp< 5, we have 

. .  xP> i ( 1  - P , ) ( 1 - 5 )  for lS1 ,  

x:> 1 - p ; - y l - 5 )  for i >  i f .  

Hence 

1 1 1  - x o ( t ) l l f  s max{p;'I(l- 5); p ; ' [ ~ -  i ( 1  - p , ) ( l  - 03, i s  if} ~ p X 1 -  5). 
Now, i f  < C/( 1 - - p , ) (  1 - 5),  which together with the properties of p ,  given above, shows 
that pLir - ( 1  - at)-b'-' + eob for t + O  for some constants a, b>0,  which proves 
corollary 2.  

We are now ready to prove that R,(xo(r ) )  is bounded for rJ0. 

Corollary 3. There exist to, C > 0 such that, for t < to: 

/ I  Rf bo( t))  (I f < c. (3 .22)  
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Proof: From (3.11) we have 

Therefore corollary 2 and xp < 1 imply t - 2 u ( x 0 )  E B, for t < to, and 
I I t - 2 u ( X o ) ( ( ,  c c t < to (3.23) 

for some C > 0. Using the boundedness of A and X i '  as operators in B,,  this allows 
us to bound uniformly the t-norm of the second term in (3.10). For the first term of 
R,, we use the identity 
t - 2 [ ( ~ c -  I ) ( = ) ] [  = 2 ~ f t - ~ u , ( x )  - t-2(Vx)f-l - t-'(vx)f i s 2  (3.24) 

where (Vx), = x,+, -x , .  Now 

t C 2 ~ ( x o )  = 5D( 1 + x0)( 1 - x') + f(Js - 1)Pl. 

t - ' ( V x o ) ,  = t-'[p,(xp) - x:] s t - I (  1 -A,) (  1 - xP) 
where we used the concavity of p, and qp:( 1) = A , ,  which is estimated by corollary 2. 
Hence t - ' V x o  E B, and 

Ilt-'Vxoll, s c t < to.  (3.23') 

Moreover, [ ( X c - Z ) ( ~ ) ] ,  is bounded by a constant times (xoxo),, which is O ( t 2 )  by 
(3.16). 

The remainder of this section is devoted to solving (3.7) for small t. This will be done 
iteratively, starting with x o ( t )  and solving at level k the equation 

Ql(x) = t 4 x R , ( x k - ' ( t ) )  (3.25) 
whose solution x k ( t )  will be shown to converge for k + m .  Thus we must consider 
equations of the form 

Q,(x) = t4xr. (3.26) 
We shall show that its solution has the same critical behaviour as xo ( t )  provided 
r = r( t )  E B, and /lrll, is bounded for tJ0.  

To this aim, we linearise Q,(X'++) around & = O  

Qf (x0+6)  = Q X x o ) 6 +  t 2C(6 )  
where C ( 6 )  is quadratic in 6 around 6 = 0. It is shown in appendix 2 that Q{(xo) is 
invertible as an operator in B, and the norm of t 2 Q : ( x o ) - '  is uniformly bounded for 
t less than some to. It follows that Q;(xo) - t4F (where F is the diagonal matrix t jvr,)  
is also invertible and I I t 2 [ Q : ( x o )  - t 4 f ] - ' l l ,  is less than some constant C, for t s to, 
provided r 2 i j i ( j ,  is sufficiently small. Hence (3.26) can be put in the form 

(3.26') 
which is solved by the contraction principle (Banach's fixed point theorem). Indeed, 
because C ( 6 )  is quadratic around 6=0,  H: leaves invariant a certain ball I I & ~ ~ , < E  
and its Lipschitz constant on that ball is less than, say, f. In this way one obtains 
lemma 2. 

6 = t 2 [  Q;(X') - r4F]-'( t2xor - ~ ( g ) )  = ~ : ( g )  

Lemma 2. There exist positive constants E, 8, to, C such that, for all t < to and all 
r E B, with f211rllr < 8, (3.26) has a unique solution x ' ( t )  = xo( t ) +  g'( t )  with the property 
)I g r (  2 )  1) , < E.  Moreover, for any such r , ,  r2: 

l16rl(~)-6r~(~)II, Ct211rl-r211r. (3.27) 

lI6'(t)llf Ct211rll,. (3.27') 

In particular, 



Critical behaviour via dynamical systems 2605 

where we used for the middle term the second resolvent formula. 
We can now control the iterative process for solving (3.7). When performing one 

iterative step, (3.25), one goes from an equation like (3.26) to another one with r 
replaced by r' = F , ( r ) ,  where 

F , ( r )  = R , ( x ' ( t ) ) .  (3.28) 

Lemma 3. For every p > 0, there exists r 1  > 0 such that F, is a contraction of the ball 
I l r l l , < p / t  for all t < t l .  

To prove this, let E and 6 be chosen as in lemma 2. That F, leaves the ball invariant 
can be seen by estimating the norm of R,(x')  in the same way as we did for R, (xo) .  
Indeed, the estimates (3.23) and (3.23') hold true for x r  with possibly p-dependent 
constants as a consequence of (3.27'). For instance, as x' satisfies (3.26), 

t - ' u ( x ' )  = t c 2 u ( x 0 )  + t 2 r +  ~ D ( X ~ X ~ - X ' X ' )  

in which the last term has norm less than 5 D l , ( 2 +  \ ~ ~ ' ~ ~ , ) ~ ~ ~ ' ~ ~ , .  Likewise 

t - I  IIvx'll, s t - '  llvx0ll , + 2t-' 115'11, s C( 1 + 2p).  

Thus 

tllF,(x')Il, s CI(P)t 

and this is less than p if t < t l s p P / C , ( p ) .  
The Lipschitz constant of F, is estimated analogously using (3.27) 

J3F,) s C , ( p ) t  

(3.29) 

and this can be made arbitrarily small by choosing t ,  sufficiently small. 

all t < t l .  Let r( t )  = Iimk+= r k (  t ) .  From the contraction principle 
As a consequence of lemma 3 the sequence ro = 0, r k  = F,( r k - l )  converges in B, for 

Ilr(t)ll, s (1 - L ( ~ ~ ) ) - ~ l l ~ , ( o ) l l ,  

which is bounded uniformly in t by (3.22). According to lemma 2, 5" converges to 
5( t )  E B, and x( t )  = xo( t ) +  5( t )  is a solution of (3.7). Moreover, inequality (3.27') 
implies 

~ ~ x ( t ) - x 0 ( t ) ~ \ , = S  Ct,. (3.30) 

In conclusion, we have constructed the solution of (3.7) with the required properties. 
One can see easily that (3.30) ensures that corollary 1 holds true for x ( t ) ,  i.e. the exact 
solution has the critical behaviour dictated by the associated two-dimensional map 
(3.12). 
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4. The critical scaling at the special transition 

When (p ,  A)  approaches (pC,  Ac), there are various scaling regimes depending on the 
path we follow in the parameter space. All these regimes can be read off the dynamical 
system associated with (2.1 1)-(2.13), which again controls the behaviour of the solution, 
as was the case at the ordinary transition considered in the previous section. We 
restrain from giving formal proofs of this assertion: they can be modelled on those in 
9 3. We mention however that the argument was founded on two important facts: (i)  
R, (xo( t ) )  has bounded II.Il,-norm for tJ.0; (i i)  t 2 Q : ( x o ( t ) ) - ’  as an operator in Br has 
a norm bounded uniformly in t for tJ.0. In the cases considered below, (i) follows as 
before from the structure of the ‘unperturbed’ equation, Q t ( x )  = 0, with a slightly 
modified definition of Q,, as shortly explained in the text. The essentials of the 
calculations leading to (ii) are given in appendix 2. 

4.1. Approaching (pc, A,) from the ferromagnetic phase 

For p > pc and with the same definition of the small parameter t, (3.8), we assume that 

A - A c = 6 t  as t i 0  (4.1) 

for some fixed 6 E R. Following the same procedure as for deriving (3.7) from (3.1), 
we obtain again an equation like (3.7), where, however, we choose 

Q,(x) = ( X c -  Z - ACP)x  - t6Px - 5t2Dx(1  -XT) 

- t 2 f ( J 5 -  1 ) f i  + t2xp(Xc - I ) ( = )  

= [ ( X c -  Z - ( A c +  6 t )  * P)x]~/x~.  

(4.2) 

(4.3) 

while R , ( x )  is obtained by adding t 2 x P ( X c - Z ) ( u )  to (3.10), with 

When solving the equation Q r ( x )  =0, we have to find a trajectory of the same map 
(3.12) in the stable manifold of e, but now the equation for xo(t) ,  is changed into 

(4.4) 
By lemma 1, this implies that x o ( t ) ,  converges to the solution f l ( S )  of the equation 
6x+ h ( x )  = 0 and, in fact, that all xo(t)i  with fixed i have the same limit 

x1(l  - st) + O( t2xl)  = qr(x1). 

1 
lim xo( t ) i  = x”,( 6) = -[ 6 + (6’ + IO)”’] 
Cl0 m i =  1,2 , .  . , . (4.5) 

Applying as before the Trotter-Chernoff formula to find the asymptotic magnetisation 
profile, we find 

where p(  a ,  6) is the solution of the Cauchy problem 

dP/dZ = h ( P )  P ( 0 )  =%(a). (4.7) 
Explicitly 

+ zo( 6))  for 6 < 0, zo( 6 )  = (2/v%) tanh-’ ?,(a) 
for 6 = O  (4.8) 
for 6 > 0, zo(6) = ( 2 / m )  cotanh-’ ;,(a). cotanh(v%/2)(z+ zo(S)) 
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Equations (4.5) and (4.6) hold for the solution of the complete equation (3.7) and 
summarise the information on the critical behaviour. We mention that, due to the fact 
that xo(t),  approaches a non-zero limit, we were forced to include the last term of 
(4.2) into the definition of Q, ; what is left in RI has the right order of magnitude, by 
the same argument as before (because the identity (3.24) is true for i 3 2), while affecting 
the first component of Q, by a O( t 2 )  term does not change the behaviour of xo( t ) .  

4.2. Approaching (Pc,  A,)  from the surface-magnetised phase 

For p < Pc, it is convenient to look at X as a perturbation around the solution X o ( p )  
of (2.18) (determined in (2.19) and (2.20)), X = Xo(/3) - V, with V diagonal and 
vanishing for i + CO. Using the perturbation formula (3.4) and defining [ A ( P ) - ' ] ,  = 
[ X o ( P ) - ' ] ; ,  (2.10) and (2.13) become 

(4.9) V + P A ( P ) ( m m )  = - A ( @ )  diag[Xo(P)-'VXo(P)-'V(Xo(P) - V I - ' ]  

ui = [ ( X o ( p )  - I - A  P ) m ] , /  m, .  

We have 

(4.10) 

XO(P) = Xc+3J3(P, - P )  + O[(P,  - P)21 (4.1 1) 

where the correction is diagonal and with equal entries for i 3 2, and 

J3 
K O ( P ) - l + K O ( P )  3 

- 
( X ,  - I + 5 D ( p ) )  = - ( X c  - I + 5D)  + O(P, - P )  A ( P )  = 

with the same D as in (3.6) and ~~0(&-/3)~~/(&-/3) bounded. 
The natural small parameter and normalisation of mi are 

(4.12) 

(4.13) 

In terms of the latter variables, (4.9) and (4.10) acquire the familiar form of (3.7), where 

(4.14) 

Again we have included into the O ( t 2 )  term part of the last term of (4.11) and 
t 2 x , . P ( X , -  I ) ( = )  which will not affect the behaviour of x o ( t )  and will leave an RI 
of the right order of magnitude (this can be checked using the analysis below in the 
same way as in § 4.1). The relevant map in solving the equation Q,(x) = 0 is now 

Q 1 ( x )  = ( X c -  I ) x+  5 t 2 x (  1 +AX) - A *  PX+O( t 2 ) .  P1. 

T:( ;) = ( (4.15) 

T: has a unique fixed point, (:), and its tangent map at the fixed point has eigenvalues 
A:, l / A T ,  where A: = 1 - G t + O ( f ' ) .  

Lemma 4. The stable manifold of the fixed point of T: is the graph of a strictly 
increasing, contractive, antisymmetric Ccc-function, q:: R + R which is concave on 
R,. Uniformly on compacts 

Iim 110 t-'[q:(x) -XI = h+(x)  = -&x(I ++x2)' /* .  (4.16) 
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The proof of this result is sketched in appendix 1.  It implies that the equation Q,(x) = 0 
has a unique positive solution, xo( t ) ,  such that lim,+m xo( t ) i  = 0, namely xo( t ) i  = 
cpT(xo(t)i-,), and xo(t), determined from the first equation (4.14) as the solution of 

cp:(x) = x - ( A  -A,)x+O( t'x). (4.17) 

We have used here the known values of A,, ( X , - I ) , , ,  cf (2.22) and (3.2). Replacing 
here the asymptotics (4.16) of cp:, we obtain that, for tJ.0 and A-A,=& with 
s>s,=Js ,  

l imxP(t )=2:(S)=[~(S2-5) ]1 '2  i = 1,2, . . . (4.18) 
110 

lim xP(t)=p+(z,S)  
t l O , i + c c . i t - z  

(4.19) 

where p + ( .  , 6 )  is the solution of the Cauchy problem 

dp /dz  = h t ( p )  p ( 0 )  =?:(a) (4.20) 

i.e. p f (z ,  6)  =&'/sinhfi(z+zi(S)), z;(6) = ( l / f i )  sinh-'(fi/?:(6)). 
We mention a few differences in the proof that (4.19) and (4.20) hold true for the 

solution of the full equation Q,(x) = t 4 x R , ( x ) .  The space B, is defined as before but 
with p ,  = cp:'(O) = A:.  Then, the construction of xo( t )  by iterating cp: on ?:(a) ensures 
that x o ( t ) E  E,  and I Ixo( t ) l l ,  is bounded for tJ.0. Hence, also t -211u(xo(t)) l l ,  is bounded, 
because essentially tC2u(x0)  = 5x0x0, which, in turn, ensures, via (3.24) and (3.23') and 
the boundedness of 

that IIR,(xo(t))ll, is bounded. 
In conclusion, around the special transition point, for /?J.p,, A + A, as well as for 

ptp,, ALA,, the solution has the critical behaviour and scales to the magnetisation 
profile predicted by the continuum Ginsburg-Landau theory, whereby - 1/  6 plays the 
role of the extrapolation length. In fact (4.7) and (4.20) are equivalent to the (second- 
order) Ginsburg-Landau equation supplemented with the appropriate boundary condi- 
tion (compare with (3.4) of Lubensky and Rubin (1975)). Also, it is not hard to see 
that the limit of t2Q: (xo) - '  derived in appendix 2 gives the exact scaled form of the 
susceptibility matrix of the model. 

It is somewhat more delicate to derive the corresponding result when (p ,  A) 
approaches ( P E ,  A,) along the extraordinary transition line, i.e. p = p,, ALA,, and we 
shall confine ourselves to a few general remarks. In this regime, the only small parameter 
left is A - A,. When trying to approximate the solution of (3.1) by an orbit of an area 
preserving map, it turns out that the latter does not change when A approaches A, and 
has only one degenerate fixed point, the stable manifold of which has an asymptotics 
cp( m )  - m - cm2 around m = 0. The only consequence of A approaching h, is the fact 
that the initial point of the orbit moves towards the origin, m, - A - A,. Thus, in first 
approximation, mi = cpoi (ml) ,  which correlated with the asymptotics of cp at 0, shows 
that m i /  m ,  scales again to the magnetisation profile predicted by the continuum theory: 
limi+m,i(A-Ac)-z m i / m l  = ( 1  + z)-' (compare with (7.4) of Lubensky and Rubin (1975)). 
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Appendix 1. The stable manifold of the relevant fixed points 

We present an easy ad  hoc way of constructing cp,. We start with the case p > pc and 
prove lemma 1. 

Let %' denote all functions cp : [0, CO) + [0, CO) which are non-decreasing, concave 
and satisfy cp(1) = 1. For cp E %', define Y,cp E %' by 

( A l . l )  

where T, is given by (3.12), i.e. the graph of Y,cp is in the image through T;' of the 
graph of cp. Otherwise Yfcp is the inverse of the function $(x' )= 
2x'-5t2x'( l  -XI')- cp(x') restricted to [ $ - ' ( O ) ,  CO), where $ - ' ( O )  2 0  is the largest root 
of $ (as $ is strictly convex and $ ( O )  = -cp(O) s 0, it has at most two roots and is 
strictly increasing beyond the larger non-negative root). 

cpf will be a fixed point of 9,. By the general theory (Hirsch and Pugh 1970), if 9, 
has a fixed point in %', this is unique and C". Thus, it is sufficient to find a fixed point 
in %'. To this aim, start with cpo(x)= 1 and iterate 3, on cpo. With $k(X')= 

are contractive and (Pk(X) is monotonously decreasing (increasing) with k for fixed 
x < 1 (x > 1, respectively). We proceed by induction. & ( O )  = -1, $o( 1) = 1 and the 
convexity of $o imply $ ; ' ( O )  < 1 and $h($O'(O)) > 1, whereupon the assertion follows 
for k = 1. Then, if the assertion is true up to k, we have $k(X') S $k-l(x') for x ' 5  1. 
Therefore $k(o) = -cpk(0) = -$i!l(0) < 0 and $k($i!l(0)) > $k-I($iil(o)) = 0. As 
above, this implies $ ; ' ( O ) <  $i!l(0) and $L($i!l(0))> 1 which proves the claim for 
k+1. 

Thus, cp, = limk,, Qk exists pointwise and is a contraction belonging to %'. Also, 
$k converge on [0, CO) to a convex function, which we denote, by a slight abuse, cp;'. 
Explicitly Y,q, = cp, means that cp, satisfies the functional equation: 

2cp,(x)-cp,ocp,(x)-x= 5t2cp,(x)[l -cp,(X)'l. (Al.2) 

2 x ' - 5 t 2 ~ ' ( 1  -X")-(Pk(X'), We have p k + l  T,(Pk = ($kl[~L;'(o),.o))-'. We assert that (ok 

We shall prove (3.15) using (A1.2). To this aim, define 

h,(x) = t-'[cp,(x)-xI (A1.3) 

in terms of which the LHS of (A1.2) is written as t[h,(x) - h,ocp,(x)]. h, is decreasing, 
concave and h,(  1) = 0. Therefore, for x < 1, we have 

h, 0 cp;'(x) > h,(x) > h, 0 cp,(x) > 0 (A1.4) 

-th,(x)hi(x) < h,(x)-h,ocp,(x)< -th,(x)h:ocp,(x). (A1.5) 

Inserting (A1.2) for the middle part of (A1.5), multiplying by cp:(x) and integrating 
from cp;'(x) to 1, we obtain 

-j' h,(y)hi(y)cp:(y)dy<5 IX 'y (1 -y2)dy<  - I' h , ( y ) ( h 0 c p , ) ' ( y )  dy. 

Now, cp:(x)> cpK1) = A ,  and h,(x) < (h,ocp,(x))/(l+ thiocp,(x)) < (h,ocp,(x))/A, (use 
the second inequality (A1.5) and concavity), so (A1.6) becomes 

9 p ; ' ( X )  9 p ; ' ( X )  

(A1.6) 

A,[h,ocp;'(x)]* <;( 1 - x*)* < A;'[h,(x)]*. (A1.7) 

Using (A1.7), (A1.4) and A , + l  for t + 0 ,  we obtain (3.15) for x < l .  For x > l ,  the 
opposite bracketing holds and the same argument works. 
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We consider next the case p < p c  and sketch a proof of lemma 4. Let V’ denote 
all antisymmetric functions cp : R + R which are positive, non-decreasing, contracting 
and concave on [0, CO). Define as before T: : %+ + V+ by 

(A1.8) 

Explicitly, T:cp = I,-’, where Jl(x) = 2x + 5t2x( 1 + x2) - cp(x). When starting with cpo = 
0 and defining Vk = Y:cpk-l ( k  5 l ) ,  one finds that cpk(x) increases with k for every 
fixed x >  0. Therefore cp:(x) = limk+m cpk(x) exists and cp: E V’ is a fixed point of S:, 
i.e. a solution of the functional equation 

2cp:(x) - c p : 0 p : ( ~ ) - ~ = - 5 t ’ c p ~ ( ~ ) ( l  +cp:(~)’). (A1.9) 

The critical behaviour of cp:, (4.16), is obtained again by bracketing the LHS of (A1.9), 
exploiting concavity. Namely, defining h: in terms of cp: as in (A1.3), we have 

h:o(cp:)-’(x)< h:(x)<h:Ocp:(x)<o (A1.lO) 

- th:(x)h:’(x) < h:(x)- h:ocp:(x) < -th:(x)h:’ocp:(x) ( A l . l l )  

from which, as before, 

(A1.12) 

The LHS of (A1.12) is larger than -A:h:o(cp:)-’(x)/2, because h:(y)h:’(y)> 0 and 
cp:’(y) < A: for y >  0; likewise, h:(y)  can be bounded by h:ocp:(y) in the RHS which 
gives the upper bound -$h:(y)’. Thus lemma 4 is proved. 

Appendix 2 

We shall sketch here a proof of the fact that t 2 Q : ( x o ( t ) ) - ’  is a bounded operator in 
B, for all t less than some to and its norm is bounded uniformly in 0 < t s to. The 
proof depends of course on the scaling regime we approach. 

We start with the ordinary transition as studied in 0 3. For /3 > /Ic, A = 0, we have 

(A2.1) t-’Q:(xO) = L, - @(XO) 

where 

L, = t-yx,- 1) + 101 

W(x0)i = 15[ 1 - (x:)’] + [$(3JS - 5 )  + 3 ( J S +  8)( x ~ ) ~ ] S ~ ~  . 
(A2.2) 

(A2.3) 

In (A2.11, L, is minus a discrete Laplacian shifted upwards such that now the perturbing 
potential Wi vanishes for i + m .  More precisely, from corollary 2, we have, for some 
tor C>O, that 

/I *bo) I1 I c V t  s to. (A2.4) 

Our starting point is the perturbation formula 

t 2 Q : ( X o ) - ’  = LY’+ LF%(Z - L;’ @ ) - ‘ L ; ’ *  (A2.5) 
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The matrix elements of L;' are calculated explicitly as 

where a,  = f( 1 +fi) + lot2 - A;'. Using (A2.6) one can easily estimate the norm of L;' 
as an operator in B, 

Equations (3.14) and (3.21) imply that, for some K ,  > 0, 

I l ~ ; ' I I , ~  K l .  (A2.7) 

To control the second term in (A2.5), it will be convenient to look at (I - L;' @ ) - I  as 
an operator in 1 2 ,  where the estimate is easier; as a consequence, we need to b?und 
the norms of the two factors sandwiching it in (A2.5), namely of I and L;'W, as 
operators from B, to 1' and from I* to B,,  respectively. We have 

and 

(A2.8) 

(A2.9) 

where we used the Schwarz inequality, (A2.4), (A2.6) and again (3.14), (3.21). Collect- 
ing the estimates, we have 

I l t2Q:(~o))- ' I I f  s KI + K,K,K3(1 - ~ ~ L ~ ' @ ~ ~ p - '  (A2.10) 

so we are left with proving that 11 L;' @ l 1 1 2  s r < 1 with r independent of t ,  for t sufficiently 
small. This will be done by going to a 'continuum limit'. Let U, : 1 2 +  L2(0,  CO) be 
defined by 

( U , & ) ( z )  = t - " 2 5 [ z / , ]  2 3 0  (A2.11) 

where [z] denotes the least integer larger than z. U, is isometric and its adjoint 
UT : L2(0, CO) + 1' is given by 

( U T f ) ,  = [ I 1  f(z) dz i = 1 , 2 , .  . . . (A2.12) 
( , - I ) ,  

The identity of 1' has the representation I = UT U,. Thus 

I I L '  @ 1 / r 2 =  I1 UT UIL;' @UT UIIIIZ~ I[( U&' UT)( U,@UT)llr2(o.m). 
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Now, if A is an operator in I’ of the matrix (A i j ) ,  then U,AUT is an integral operator 
of kernel (U,AUT)(z ,  z’) = r - ’A[ , , , l , [ ,~ / , l .  Using this and (A2.6), one can verify that 
U,L;’UT converges in norm to the integral operator of kernel ( 1 / 2 m ) x  
[exp( - m l z - z ’ l ) - e x p (  - m ( z + z ’ ) ) ] ,  i.e. to ( -d2/dz2+10)-’,  where d2/dz2 is 
supplemented with zero Dirichlet boyndary conditions at z = 0 (which makes it a 
self-adjoint operator in 15’). Also, U, WUT converges in norm to d, the multiplication 
by w(z) = 1 5 / c o s h 2 ( f m z ) ,  as follows from corollaries 1 and 2, which control the 
uniform convergence on compacts and the uniform asymptotics, respectively. Finally 

( A2.13) 

because -d2/dz2+ 10 - G is strictly positive definite, as can be seen by calculating 
explicitly its inverse (see below). Let us remark that, in fact, we proved that 
t2U,Q~(x0)- ’  UT converges in norm on L2(0, CO) to the inverse of -d2/dz2+ 10- d 
supplemented with zero Dirichlet boundary conditions at z = 0. The kernel of the 
latter operator can be obtained by integrating the differential equation [ -d2/dz2 + 10 - 
w(z)]+(z) = 0. Let 

/ I (  -d2/dz2+ lO)-’Gll L2(0,=)< 1 

y(z)  = l / c o s h 2 ( i m z )  
(A2.14) 

u ( z )  = i z  + ( 1 / 2 m )  s i n h ( m z )  + (1/ 1 6 m )  s i n h ( 2 m z ) .  

Then, y(z) is the solution vanishing at +CO, and y(z)u(z)  is the solution satisfying the 
boundary condition u(0) = 0, so the resolvent kernel is y(z)u(z,)y(z’), where z, = 
min(z, z’). In particular, we proved 

(A2.15) 

We conclude this case with the remark that, for A < A ,  fixed, the result and its 
proof do not change, because W interpolates the same function, w(z), and U,L;’UT 
converges to the same operator in L’(0, CD) (because lim,,o a,  = f( 1 + 6) - A - 1 > 0, 
so, in (A2.61, lim,+o a,A;’/(a,  +A;’  - A , )  = 1). 

The situation changes when A-, A,, pip, ,  as considered in 0 4.1. In this case, 
essentially 

t-’Q:(Xo) = L:- @‘~(xO) - ( b / t ) P  A , ,  - ( S / t ) P  (A2.16) 

where 

Ly = t - ’ (  X ,  - 1 - A c P )  + 101 (A2.17) 

lim ( W8)#  = wg(z) = 1 -p(z ,  
I - X . ,  -0,tr ‘Z 

for S < O  
m 1 5 /  COS h2 - ( z + zO( S ) ) 

2 
= ( o  for S = O  (A2.18) 

for 6 > 0. 
m - 15/sinh2 -( z + zO( 8)) 

2 

We omit all details related with going from B, to I’ and back, and sketch only the 
core of the argument, which is the analysis in 1’. We consider first the rank-one 
boundary perturbation, which is strongly felt in this case. We have 

t2Q:( xO)-’ = A i,: + ( S /  t)Ai,: PA ;,:[ 1 - ( S /  t )( A i.:) I I ] - ’  (A2.19) 
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so it will be sufficient to show that Ai,:, t - ' A , : P A , :  are uniformly bounded and 
lim 6t-'(A;,i)ll < 1. To this aim, we apply in turn to A;,: a perturbation formula like 
(A2.5). The main difference is that now Lf- '  is given by (A2.6) with a, = -tm+ O( t 2 ) ,  
so 

i.e. U,L?-' UT converges to the resolvent of -d2/dz2 with Neumann boundary condi- 
tions at 0 (zero derivative) on L2(0, m). From (A2.18) and (A2.20) we obtain as before 
that U , A , ) U T  converges in norm on L2(0,m) to the inverse of -d2/dz2+10-d,  
supplemented with Neumann boundary conditions at 0. We have 

(A2.21) 

where y,, ug can again be calculated in analytic form (cf, e.g., Lubensky and Rubin 
1975). We do  not reproduce these rather cumbersome formulae. They show that the 
limit operator (A2.21) is positive and bounded and that, moreover, the rank-one 
operator in (A2.19) converges 

lim f-Y u,A,?A;,: W ( Z ,  2 ' )  = Y,(Z)Y~(Z')(Y~(O)~,(O))~ 
1-0 

= YS(Z)Y,(Z')/ 1oG(s)2(1 - x',(6I2l2 (A2.22) 

(A2.23) 

Remembering (4.5), one sees that all the terms in (A2.19) are uniformly bounded and 

lim t2(  utQ:(xo)-' uT)(z, z') =Y6(z)u,(zm)Y~(z') 
1-0 

+ 6yg( z)yg( z')/ lox',( s)2( 1 - x',( 6)2)2( 1 - 6/m;,( 6 ) ) .  (A2.24) 

The RHS of (A2.24) is the kernel of the inverse of -d2/dz2+10-$, on L2(0,m) 
supplemented with the boundary condition 

@(O)  = -S+(O). (A2.25) 

Finally, for the case considered in 0 4.2, P < Pc with f = ((d3/3)(Pc - P ) ) " * ,  A - A c  = 
6t (6 > A), we have (omitting irrelevant higher-order terms) 

r-2Q;(xo) = L:+ @i(xo) - ( 6 /  t ) P  = A l l  - ( 6 /  r )P  (A2.26) 

where Ly= I - ~ ( X , - Z - A , P ) + ~ Z ,  Gi(x") ,  = 15(xp)' and 

lim W i ( x o ) ) ,  = wi(z)  = 1 5 ~ + ( z ,  6 ) = 3 0 / s i n h f i ( z + z o ( 6 ) ) .  (A2.27) 

Following the same procedure, we obtain the convergence of ( A i , , - '  (the analogue 
of (A2.21)). Also, (A2.22)-(A2.24) have their counterparts here, which, when intro- 
duced into the perturbation (A2.19), show that U, t2Q: (xo) - '  UT converges in norm in 
L2(0,  CO) to the inverse of -d2/dz2+ 5 +  6, supplemented with the boundary condition 
(A2.25). 

r + c c , r - o , l I - z  
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